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Abstract
We present a comprehensive calculation of 3D dynamic stabilization (DS) of
ground-state hydrogen in superintense circularly polarized laser pulses. Three
laser-pulse envelopes have been considered: Gaussian, sech, and Lorentzian.
The ionization probability at the end of the pulse Pion was calculated for a range
of high frequenciesω ranging from 0.65 to 8 au, for peak fields up to about 60 au
(depending onω), and for full width at half maximum pulse lengths τp extending
from 0.25 to 100 cycles (depending on ω). This is a very accurate calculation,
very much more time consuming than its linear polarization counterpart. For
Gaussian and sech pulses we find prominent DS and substantial atomic survival
under conditions where our nonrelativistic, dipole approximation calculation is
expected to be valid. For Lorentzian pulses there is no DS in the range studied,
and we explain the reasons. We find that the evolution of the atom is adiabatic
and amenable to single-state Floquet theory, up to very large peak fields (several
au), and down to very short pulses (few cycle, subfemtosecond). The general
case of nonadiabatic pulses is interpreted in terms of the multistate Floquet
theory. We compare the results for Pion in the cases of circular and linear
polarization and find a surprising resemblance, when represented as a function
of the peak intensity. Our results indicate the possibility of observing DS
experimentally with the VUV–FEL light sources that are now in test operation,
or with the attosecond pulses obtained from high harmonic generation, in a
state-of-the-art experiment, however.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Dynamic stabilization (DS) is a nonperturbative aspect of atomic ionization in superintense
laser fields: by increasing the peak intensity of a laser pulse, while keeping the shape of its
envelope fixed, the ionization probability of the atom does not grow to 1 (total ionization), but
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starts decreasing (possibly in an oscillatory manner), or levels off at some value smaller than 1.
Due to its counterintuitive nature, it has attracted considerable attention, and a vast theoretical
effort went into its study in the decade elapsed since its discovery. (For an overview of atomic
stabilization, see [1].) Computational difficulties have limited most theoretical studies to 1D
models, and only a few have addressed the realistic problem of 3D hydrogen. For the ground
state of the atom, detailed studies have also been discouraged by the realization that there
appeared to be no prospect of detecting the phenomenon experimentally, as the conditions of
observation required high-frequency lasers producing very short pulses, unavailable in the past.
This has shifted the interest to DS of Rydberg states, for which the detection was eventually
achieved [2, 3].

The experimental situation has improved dramatically in recent years, with the advent of
superintense, ultrafast high-frequency radiation sources. Two types of sources have been
conceived, and are being actively developed: VUV–FELs [4, 5], and attosecond pulses
produced from high harmonic generation [6, 7]. Thus, the VUV–FEL at DESY is aimed
at obtaining photon energies in excess of 200 eV, at intensities of 1019 W cm−2 and higher,
in the form of pulses in the femtosecond range. Attosecond pulses are very short to start
with; at a photon energy in the 80 eV range, a tight focusing could conceivably lead to some
1018 W cm−2 of intensity.

These advancements have prompted a comprehensive computation of DS for the ground
state of H in order to reassess the observability of the phenomenon by Dondera et al [8, 9].
The case of linear polarization was considered, with pulses of both finite duration (cos2

envelope, [8]), and infinitely extended wings (Gaussian and sech envelopes, [9]). The
ionization probability Pion was mapped out over extended ranges of high frequencies, peak
electric field amplitudes, and pulse durations τp. The conclusion was that detection of DS
should be possible with the new light sources in a state-of-the-art experiment.

DS for circular polarization has received little attention in comparison to its linear
counterpart. One of the reasons has undoubtedly been the much larger computational effort
required for the circular case. As a consequence, there are no accurate 3D results on DS for
ground-state H. Neither have experiments been performed.

Protopapas et al [10] and Patel et al [11], have considered DS for the ground state of a 2D
model atom with a soft-core Coulomb potential of the form V (r) = −(a2 + x2 + y2)−1/2, with
a constant, at ω = 1 au. DS was found to exist for arbitrary elliptic polarization, ‘death valley’
being deeper in the circular case than in the linear one. The properties of the time-dependent
wavefunction obtained were studied for short pulses. A similar study for the same potential,
and for circular polarization only, was carried out by Chism et al [12], at ω = 1.2 au. The
structure of the wavefunction was contrasted with the one in [11]. The calculation of the
lifetimes resulted in excessively high values at larger field amplitudes (see section 3). Also
Kwon et al [13] have studied DS from a 2D model atom and presented a few Pion curves (their
figure 1); the emphasis was on comparing classical and quantal behaviour.

A qualitative study of DS for 3D hydrogen was done by Choi and Chism [14]; the emphasis
was on the properties of the atomic wavefunction, which manifests a peculiar rotating motion
at high frequencies and intensities. Bauer and Ceccherini [15] have carried out a full 3D
calculation for the ionization of the ground state of H using a time-dependent Schrödinger
equation (TDSE) code. Although their emphasis was on two-colour stabilization, they derived
results also for single-colour stabilization at ω = 1 and 2, and variable field strength. Thus,
they obtained stationary ionization rates at these frequencies by following the decay of the
wavefunction in time for flat-top pulses (see section 3 below), as well as results for multiphoton
ionization with finite duration pulses, and also studied the peculiar structure of the wavefunction
(see also [14]). DS was briefly mentioned [15, figure 1].
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Figure 1. Trajectory of the tip of A(t), equation (1), for a Gaussian-pulse envelope, equation (2), at
various widths τp, in cycles, as indicated. Time t = 0 is marked by a dot, and the sense of motion
by an arrow.

We note also the early result by Gajda et al [16], for the excited n = 2, l = 1,m = 0,±1,
at ω = 0.25 au, and 20 cycles pulses with a sin2 envelope. For the m = 0,+1 cases, DS
was prominent, but much less for the m = −1 case, at least in the range of fields considered
(E0 < 0.6 au).

Quasistationary (adiabatic) stabilization (QS) has also been studied in a few cases for
realistic 3D hydrogen and circular polarization. We recall that QS is the nonperturbative
property of the atomic rate � to decrease (possibly in an oscillatory manner) beyond some
critical value of E0 (see [1, section 2]). In fact, it was the application of the high-frequency
Floquet theory to the case of ground-state hydrogen and circular polarization that led to the
discovery of QS by Pont and Gavrila [17]. Full Floquet calculations for the rate were carried out
by Dörr et al [18] for the states 1s,2s, at some high frequencies (ω > 0.5 au), using the Sturmian
approach (see also Potvliege [19]). Results for QS of the ground state and a comparison with
other works were given by Bauer and Ceccherini at ω = 1 and 2 in the aforementioned
paper [15]. Zakrewski and Delande [20] have made a complex scaling calculation of � for the
states n = 2, l = 1,m = 0,±1, and frequency ω = 0.25 au (a case considered earlier in the
work of Gajda et al [16]). It was shown that DS had a surprisingly adiabatic character, even
for very short pulses (see [1, section 3.2]).

In the present paper we want to explore the observability of DS for ground-state H,
driven by a circularly polarized pulse. We shall consider pulses with Gaussian, sech, and
Lorentzian field envelopes, at various peak values of the intensity, and cover the range of high
frequencies (ω > 0.5 au), at a variety of τp. We strive at obtaining comprehensive and highly
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accurate results for Pion. The accuracy of our methods will be illustrated by comparing the
quasienergies obtained with our TDSE code [21] to those obtained with the Sturmian Floquet
code by Potvliege ([19], and private communication).

In the following, we discuss first the laser pulses we are using (section 2), then present
the computation of Pion (section 3), followed by the results (section 4) and their interpretation
(section 5); we finally draw conclusions (section 6). We shall be using atomic units throughout,
unless otherwise noted.

2. Laser pulses

A realistic ‘circularly polarized laser pulse’ is that emerging from a quarter-waveplate upon the
incidence of a pulse of linearly polarized radiation. As a consequence the propagation along
one of the optical axes is retarded by a quarter period with respect to the other. The vector
potential of such a pulse is represented by

A(t) = A0[ f (t) sinωt e1 − f (t − T/4) cosωt e2], (1)

where f (t) is the pulse envelope. We note that the need for taking a retarded pulse envelope
f (t − T/4) along one of the axes was ignored in earlier DS calculations [10–14, 16].

In the following, we shall be varying A0 and ω, at fixed pulse envelopes f (t). For the
latter we shall use

fG(t) = exp[−(1.177t/τp)
2],

fsh(t) = sech (1.763t/τp),

fL(t) = [1 + (1.29t/τp)
2]−1

, (2)

where τp represents the full width at half maximum (FWHM) for A2. These functions are very
much alike in their central parts (−τp/2 < t < +τp/2), but differ substantially in the shape
of their (infinitely extended) wings: the Gaussian pulse has rapidly decreasing wings, the
sech pulse is an intermediate case, while the Lorentzian pulse has relatively slowly decreasing
wings. The choice of these envelopes has an exploratory character, as those of the anticipated
high-frequency light sources are not known.

The pulses equation (1), with the envelopes equation (2), satisfy for arbitrary τp the
conditions ∫ +∞

−∞
A(t) dt = 0,

∫ +∞

−∞
E(t) dt = 0, (3)

that have been shown to be necessary in order that the fields can represent physical pulses
(see [1, section 3.1]). Under these conditions, the displacement and drift momentum acquired
by a free classical electron at the end of the pulse are also zero: (δr) = 0, (δp) = 0. This
classical situation corresponds to the maximum quantum mechanical overlap of the electron
and atom wavefunctions at the end of the pulse, and should be optimal for the survival of the
atom (see [1, sections 3.1 and 3.3]).

It is instructive to consider the trajectory of the tip of A(t) for pulses with various durations
τp. This is given in figure 1, for a Gaussian-envelope pulse at τp = 0.25; 1; 2; 7. It is apparent
that, for short pulses, there is little resemblance to the well known circular rotation pattern for a
circularly polarized plane wave3. Moreover, it is obvious that, for short pulses, the distinction
between ‘circular’ and ‘elliptic’ polarizations is meaningless.

3 The trajectory of A(t) is symmetric with respect to the second diagonal of the reference axes Ax , Ay . Indeed,
from equation (1) it follows that Ax (t) = −Ay(−t + T/4), Ay(t) = −Ax (−t + T/4). Consequently, to each
point [Ax (t), Ay (t)] of the trajectory, there corresponds a point [−Ay(τ ),−Ax (τ )], also on the trajectory, passed at
τ = −t + T/4, and hence the stated symmetry.
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Figure 2. Time dependence of the electric field magnitude |E(t)|/E0 corresponding to A(t) of
equation (1), where E0 = ωA0/c, for a Gaussian pulse, at τp indicated (in cycles).

The electric field E(t) corresponding to equation (1) has a more complicated form. We
represent the time dependence of its magnitude for a Gaussian pulse, and two pulse durations (a
short one, and a longer one) in figure 2. To characterize the peak value of |E(t)|, we introduce
a nominal value, defined by the plane wave connection E0 = (ω/c)A0. Figure 2 shows that E0

gives a good description of the maximum of |E(t)|, especially at larger τp. In the following we
shall use interchangeably as variable either E0 or I0, the peak intensity corresponding to the
nominal value E0. We recall that the connection between E0 and I0 for a circularly polarized
plane wave is E0 = (I0/2)1/2, in contrast to the linear case, when we have E0 = I 1/2

0 .

3. Numerical procedures

We obtain Pion by the standard procedure of calculating a sufficient number of survival
probabilities in discrete n, l,m states at the end of the pulse, and taking the complement of
their sum to 1. The TDSE is integrated in the velocity gauge using a highly efficient numerical
code developed by one of us, that has been optimized in all possible ways [21]. In contrast to
the linearly polarized case, considered in [8, 9], the running time here is much longer. This
comes mainly from the fact that a much more extended spherical harmonics basis is needed: if
the size of the basis is Lmax +1 in the linear case, it will be (Lmax +1)(Lmax +2)/2 in the circular
case. Thus, for E0 ≈ 5 and ω = 2, the difference in running time is of about a factor of 10.
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Figure 3. Solid curve: ionization rate � (in au) for ground-state H and circular polarization at
ω = 2 au, as a function of I 1/2

0 au, calculated from our TDSE program (see section 3). Dashed
curve: � for linear polarization from the calculation by Dondera et al [8], figure 8. Also marked
is � for the LOPT one-photon ionization rate.

Although the code has already been checked in low-frequency problems [22], we have
undertaken a thorough testing of it also at high frequencies and for circular polarization. Thus,
we have derived total ionization rates from our TDSE code and compared them, at small E0, to
rates from lowest-order perturbation theory (LOPT), and, at high nonperturbative E0, to rates
from Floquet theory. At small E0, the agreement for � with the LOPT one-photon ionization
rate (multiphoton contributions are negligible) was excellent; see also figure 3. We briefly
describe the comparison for the nonperturbative regime.

Our TDSE rates were obtained by following in time the decay of the projection of the
wavefunction � on the field-free 1s state (specifically |〈1s|�〉|2) during the flat top of an
adiabatically turned-on pulse. If the turn-on is sufficiently slow, � can be represented at all
times by just one Floquet state (‘single-state Floquet theory’), and the decay during the flat
top will be given by e−�t , where � is the corresponding total ionization rate. In order to be
able to extract an accurate �, a sufficiently long turn-on time must be chosen, to minimize the
excitation of other Floquet states, as well as long flat tops for optimal fitting. (This becomes
particularly critical at high E0, because dE0/dt has to be kept low during turn-on.) As the
turn-on can never be infinitely slow, some discrete Floquet states will inevitably be excited,
and this will perturb the exponential decay curve. Indeed, a close inspection of it reveals slight
superimposed oscillations. The dominant ones are due to interference between the initial
state i and lower excited states n; they occur at atomic transition frequencies Re(En − Ei),
where En,i are the corresponding quasienergies. This can be shown by spectral analysis of the
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Table 1. Hydrogen quasienergies E = W − i(�/2) in a circularly polarized field (considered
in section 2), at ω = 2 au and various α0 = E0/ω

2, according to our TDSE calculation and the
Floquet code of Potvliege [19]. The latter values bear the subscript P.

α0 W WP � �P

0.5 −0.445 97 −0.445 98 0.065 14 0.065 18
1 −0.341 38 −0.341 41 0.055 85 0.055 90
2 −0.253 35 −0.253 33 0.005 815 0.005 829
3 −0.201 76 −0.201 75 0.002 413 0.002 424
5 −0.143 72 — 0.000 4356 —
8 −0.101 03 — 0.000 1069 —

wavefunction during the flat top of the pulse. In fact, in our cases practically only one excited
state was present beside the initial one. Then a two-state Floquet analysis of the situation
allows the extraction of the initial state � with high accuracy. (A more detailed description of
the procedure and the evaluation of errors will be given elsewhere.)

A TDSE code is capable of providing also the real part of the quasienergy, E ≡ W−i(�/2),
if adiabatic pulses of the type described are used. For a wavepacket� approximated by a single
Floquet state, the projection on the unperturbed ground state can be written

〈1s|�〉 � e−iWt e−(�/2)t�(t), (4)

where �(t) is a periodic function. Thus, after each period 〈1s|�〉 gets multiplied by
e−iW (2π/ω)e−(�/2)(2π/ω). Knowledge of � yields W . To correct for possible nonadiabatic
effects, the accuracy on W could be enhanced by a two-state Floquet approximation for � .
However, this is hardly needed, as for W the accuracy is much higher than that for �, to start
with.

We present in table 1 our results for the quasienergies atω = 2 and a few values of α0. The
error analysis allows us to conclude that � is determined with an accuracy of better than 0.1%,
and W to better than 0.05%. Also shown are results from the Floquet code of Potvliege [19].
The latter were obtained by just optimizing the available input parameters, (i.e., without trying
to push the performance of the code to its limits). We found that the code became unstable
beyond α0 = 4, so that α0 = 3 is the last value included in table 1. The agreement with our
results is to better than 1% for �, and 0.1% for W .4

The curve for � at ω = 2 is given in figure 3, where we have represented it as a function
of I 1/2

0 . This variable has been chosen so as to bring out the resemblance of the � curve
for circular polarization and that for linear polarization, also shown in figure 3. The third
curve shown is that of � from LOPT. Note that all three curves coincide at small intensity,
as they should on theoretical grounds. Both � for circular and linear polarizations manifest
QS: they attain a maximum, at about the same value I 1/2

0 ≈ 4, beyond which they decrease
monotonically. In fact, the two curves have a rather similar shape, when represented in terms
of I 1/2

0 ; when using as representation variables the two E0, for circular and linear polarization,
the two curves spread apart.

As another test of our code, we have calculated Pion for the 2p, m = 0,+1 states of
H, considered by Gajda et al [16, figure 1b]. We found agreement at the graphical level.
Furthermore, our attention was attracted by the statement of Chism et al [12, see figure 1], that

4 The asymptotic formula �as of Pont and Gavrila for the circularly polarized case (see [1], equation (11) and figure 2)
gives surprisingly good agreement with the values of � in table 1 even at low α0. Thus, at α0 = 1; 2; 3; 5; 8, �as
gives 0.055 75; 0.006 969; 0.002 065; 0.000 4460; 0.000 1089, respectively. This new assessment should replace the
critical comment made in [1], after equation (12).
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in their 2D model calculations a ‘dramatic increase of lifetime’ occurred at ω = 1.2 au, above
I ≈ 10 au, with lifetimes in the thousands of atomic units. This was totally out of line with
the 3D hydrogen results of Dörr et al [18]. Hence, we have applied our 3D code to calculate
the lifetimes of real H in the range considered, and have found indeed DS, but no dramatic
increase of the lifetimes. Our results for the lifetimes are: 13.1 au at α0 = 0.49 (F = 0.71
in the notation of [12]); 8.95 au at α0 = 0.98 (F = 1.42); 57.9 au at α0 = 1.96 (F = 2.82);
130.3 at α0 = 2.46 (F = 3.54), whereas some 1800 au was found in this case in [12]; we are
defining α0 = E0/ω

2 au.
In the determination of Pion we calculate highly accurate transition probabilities to the

individual n, l,m states. The accuracy on Pion, however, will depend on the number of states
summed over. It is not difficult to achieve a final accuracy of 0.1% if desired.

We also mention that we have tested the effects on Pion of ignoring the quarter-wave
retardation of the envelope in the second term of equation (1), i.e., using f (t) instead of
f (t − T/4). As most of the ionization occurs at the top of the pulse (where f (t) ≈ 1), one
might expect the effects to be negligible for long pulses such that (T/4)/τp � 1, and important
in the opposite case. Indeed, by looking at ω = 2, and τp = 5 cycles, we found no difference
between the alternatives for Gaussian and sech pulses, but at τp = 0.25 the difference became
100% or more.

Our computation covers an extensive range of cases. The frequencies lie in the high-
frequency (i.e., ω > 1 Ryd) range 0.65 � ω � 8 au. At each ω, we have considered the pulse
envelopes in equation (2), with FWHM pulse widths starting with τp = 0.25 cycles (a case
of theoretical interest), and extending to values of τp at which Pion is not yet too close to 1.
The peak electric field was taken in the range 0 < E0 � 60 au, with the maximum value
depending on ω. This value was chosen such that the expected relativistic corrections would
still be small. In this respect, we have used as guidance the 1D model calculations by Kylstra
et al [23], which have shown that the corrections are negligible at ω = 2 and E0 = 20, and
the fact that classical relativistic corrections scale as E0/ω.

4. Results

We show in figures 4–7 some of our results for Pion represented as function of I 1/2
0 , at fixed ω,

for the envelopes G, sech, L, at different τp. We signal the following features.
In nearly all cases, at given ω, τp, I 1/2

0 , we see that

PG
ion < Psech

ion < PL
ion. (5)

This can be explained by the fact that, under the circumstances, the field amplitudes, while
more or less the same in the central parts for all envelopes, are larger in the wings as one
proceeds along the sequence G, sech, L, thus leading to more ionization.

At small I 1/2
0 , for all ω, τp, the curves of PG

ion, Psech
ion , PL

ion, are closely bunched together,
starting from zero and rising steeply. This is the LOPT regime, dominated by one photon
ionization. The rapid growth of Pion subsides at some value of I 1/2

0 (depending on ω, τp), and
is replaced by the nonperturbative regime, characterized either by a decrease, a plateau, or a
slow increase with I 1/2

0 .
The decrease or plateau behaviour of Pion with respect to I 1/2

0 = E0/ω represents,
according to our definition of section 1 (see also [1, section 3]), dynamic stabilization. DS
occurs for the Gaussian and sech envelopes in all cases shown (for τp < 1 and ω = 4, 8,
the growth of Pion has not been completed over the range of I 1/2

0 shown). The values of
Pion become larger when increasing τp at fixed ω. If τp is long enough, Pion gets to be
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Figure 4. Ionization probability Pion of ground-state H exposed to the pulses in equation (1), with
ω = 0.65 au, and the envelopes in equation (2), at various pulse widths τp (in cycles), as a function

of I 1/2
0 = √

2E0 (in au). Solid curves: Gaussian pulses; dashed curves: sech pulses; dotted curves:

Lorentzian pulses. The value of τp is specified next to the Pion curves coalescent at small I 1/2
0 .

indistinguishable from 1. For example, for the Gaussian envelope, one may consider the
curves for τp = 5, 25, 100 cycles, at ω = 2, 4, 8, respectively, to be still significantly
different from 1, so that DS be detectable. The corresponding values in femtoseconds are:
τp = 0.38, 0.95, 1.90 fs. The FWHM pulse durations required to observe DS are thus quite
short, of the order of the femtosecond, or less.

It is apparent from the figures that there is no DS for Lorentzian envelopes in the range
of I 1/2

0 shown (except for ω = 2 and τp = 0.25). This fact was first signalled for Rydberg
states by Piraux and Potvliege [24]. The explanation will be given below. It should be noted,
however, that the Lorentzian envelope is rather unlikely to occur in practice.

For a given envelope, and at fixed τp, I 1/2
0 , we note that Pion is smaller, the higher ω is.

This is specific to the high frequencies we are considering. We note that the case of ω = 0.65
is only marginally a high-frequency case. This manifests itself in the fact that (in the range of
I 1/2
0 considered), although Pion undergoes significant DS for extremely short τp, for longer τp

it becomes practically 1 (not shown in figure 4).
One may inquire about the behaviour of Pion beyond the range of peak fields we have

explored. Figures 5–7 suggest that Pion starts rising at the end of the range even for the
Gaussian and sech pulses, i.e., that the DS regime would be followed by a ‘destabilization
regime’. This, indeed, was shown to be the case for the ground-state H and linear polarization,
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Figure 5. The same as for figure 4, except that ω = 2 au.

with cos2 envelopes at ω = 8, in [8, figure 7]. The calculation was carried out there up to
E0 = 3000, and it revealed that the DS regime is followed by a destabilization regime, and,
at still higher E0, possibly by another plateau-like DS regime. In this respect it is interesting
to mention the rigorous mathematical result of Fring et al [25, theorem 3], which states that,
at fixed pulse envelope of finite duration satisfying the conditions (3), for E0 → ∞ we have
lim Pion < 1. The findings in [8, figure 7] indicate that this would happen only at extremely
high E0. The present pulses, however, have infinite duration, and it is an open question to
what extent the theorem could be generalized to this case. Obviously, the discussion of the
E0 → ∞ limit is of academic interest within NR theory, since at very large fields, relativistic
effects become essential.

5. Discussion

Let us first focus on our results for adiabatic pulses, i.e., for which dE0(t)/dt is sufficiently
small throughout the pulse. This case can be interpreted in terms of single-state Floquet theory,
see [1, section 3.2]. The ionization probability at the end of the pulse can then be written

P(ad)
ion = 1 − exp

[
−

∫ +∞

−∞
�[E0(t)] dt

]
. (6)

Conversely, the fact that the dynamically calculated Pion coincides with P(ad)
ion is an indication

that the evolution is adiabatic. To make the comparison, the value of � is needed over the
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Figure 6. The same as for figure 4, except that ω = 4 au.

whole range of variation of E0(t). We have described the calculation of � by two methods in
section 3, and the results at ω = 2 were given in figure 3.

The comparison of Pion and P(ad)
ion at this frequency in terms of I 1/2

0 is shown in figure 8
for the envelopes considered. The agreement extends to surprisingly high values of I0 for all
three envelopes, even for such short pulses as τp = 5. This was first signalled in the study by
Zakrewski and Delande [20] of the excited states n = 2. The deviation of Pion and P(ad)

ion is a
measure of the magnitude of the excitation to higher Floquet states (‘shake-up’). Their close
agreement for ground-state H is a consequence of the relatively large energy gap between the
ground and the first excited state energies, that inhibits shake-up. The agreement is obviously
improved as τp is increased at given ω.

Note that the maxima of Pion in figures 5–7 occur at intensities that correspond
approximately to the maxima of � for the ω considered (minima of the lifetimes, ‘death
valleys’), as calculated by Pont and Gavrila (for example, see [1], figure 2). This is another
manifestation of the applicability of equation (6).

Our results for arbitrary pulses can be interpreted in terms of the multistate Floquet theory
(MSFT), as was done for the linearly polarized case [8], [1, section 3.2]. This consists of
analysing the evolution of the physical wavepacket in terms of superpositions of Floquet
states:

�(r, t) ∝ SνCν(E0)ψ
(ν)(r, t; E0, ω), (7)
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Figure 7. The same as for figure 4, except that ω = 8 au.

where ψ(ν)(r, t; E0, ω) are the individual Floquet states, and E0 is the field amplitude. The
summation Sν extends over discrete quasienergy states, but should include also an integration
over continuum states along an adequate contour in the complex energy plane. In a constant
amplitude field E0, the coefficients Cν(E0) are constant; in a variable-amplitude field, they are
time dependent, and ψ(ν)(r, t; E0, ω) acquires an extra time dependence due to E0(t).

At low E0 the evolution of the system is, in most cases, adiabatic, and in equation (7) we can
retain only a single Floquet state, that corresponding to the initial state. We are then in the realm
of single-state Floquet theory considered previously. However, by keeping the pulse envelope
fixed and increasing E0 (or I 1/2

0 ), as we have done in figures 4–8, the adiabaticity is gradually
lost (dE0(t)/dt becomes too large at some time during the pulse), and Pion starts deviating from
P(ad)

ion . This means that several Floquet states need to be included in the expansion equation (7).
As a consequence, at the end of the pulse the system will have population in excited field-free
states n, l associated with these Floquet states. Because ionization from higher Floquet states
has reduced rates, shake-up means smaller Pion, and hence shake-up should help DS. This
is confirmed by the fact that in figure 8, systematically Pion � P(ad)

ion . However, a change in
the physical origin of DS has set in: from adiabatic (QS related) to nonadiabatic (shake-up
related).

Beyond some critical value E0, population will also be transferred directly into the
continuum during the turn-on (extremely large dE0(t)/dt). Consequently, the expansion (3)
will develop contributions from continuum Floquet states. Even in these states, the system
is subject to multiphoton (‘free–free’) transitions, but the yields are smaller the larger the
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electron energy is, so that high in the continuum, the electron oscillates practically like a free
particle, with negligible influence from the nucleus and negligible loss of energy. During the
turn-off, the atom undergoes another shock, which may allow it to recapture part of this freely
oscillating population, but some of it will end up in the continuum of the unperturbed atom and
will disperse. This effect we shall denote as ‘shake-off’. We are dealing here with a change
in the physical nature of the ionization: from multiphoton ionization, involving absorption of
photons, that can be described in terms of several discrete Floquet states and gives rise to well
defined lines in the EPI/ATI spectrum, to shake-off ionization, caused by the shock of the field
amplitude, that cannot be described in terms of discrete energy photons, and gives a continuum
background in the EPI/ATI spectrum (the issue will be elaborated on elsewhere).

We shall now address the issue of the difference in DS for the various envelopes in
figures 4–7. For this we shall rely on equation (6), as it gives in all cases an adequate qualitative
result. We want to show that the difference stems from the pedestal of the envelopes. We split
the integral J appearing in equation (6) under the exponential (representing the convolution
of �(E0) with the pulse envelope E0(t)), in two parts: J1, the contribution of the central part
of the envelope, and J2, that of the pedestal: J = J1 + J2. We define the pedestal as being the
part of the envelope for which |t| > τp. Thus, equation (6) becomes

P(ad)
ion = 1 − exp(−J1) exp(−J2). (8)
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In figure 9 we consider the values of J1, J2, J for the Gaussian and Lorentzian pulses, at
ω = 2 and τp = 5. The figure shows that for all E0 the contributions of the central parts J1

are about equal; this was to be expected, as the central parts of the envelopes are nearly the
same. Moreover, these contributions are decreasing functions at large E0. This is because,
beyond a certain E0, the central part of the envelope is pushed progressively into the range
in which � decreases (see figure 3). On the other hand, the pedestal contributions J2 differ
greatly, the one for the Lorentzian growing much faster with E0. This is because, although at
growing E0, the peak of � (‘death valley’) is convoluted with increasingly distant points of
the envelope, this being nonvanishing, it keeps adding up to the integral in equation (6). The
wings of the Lorentzian being much broader, the build-up is much larger than for the Gaussian.
Since J1 is about the same in both cases, but J2 is much larger for the Lorentzian, according to
equation (8), P(ad)

ion will be considerably larger for the Lorentzian. Moreover, due to the actual
numerical values of the exponentials in equation (8), P(ad)

ion turns out to be decreasing with E0

for the Gaussian, and increasing for the Lorentzian (no DS).
It is natural to compare our DS results for circular polarization with those obtained by

Dondera et al for linear polarization [9]. We show the comparison for Pion at ω = 2 and
4 in figures 10 and 11, respectively, for sech pulses at different τp. The resemblance of the
corresponding curves, not only in terms of shape, but also actual values is striking. (The same
happens for Gaussian pulses.) This is rather remarkable, because after all, we are dealing
with different physical situations, leading to different kinds of distortion of the atom in the
nonperturbative regime. We propose to explain the resemblance by two facts. One is the
pervasive validity of the adiabatic approximation to Pion, equation (6), even for short pulses;
see figure 8. The other is the overall resemblance of � for the two cases, illustrated in figure 3.
Note that the resemblance of Pion is brought out by representing them in terms of I 1/2

0 ; had
we used the variables E0 corresponding to circular and linear polarization instead, the two
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Figure 10. Comparison of Pion for circular and linear polarizations; sech pulses are considered
with ω = 2 au and the indicated widths τp. Solid curves: circular polarization; dashed curves:
linear polarization.

curves would have spread apart. One may argue that the representation in terms of I0 is more
physical, as I0 is an observable quantity.

Finally, with our numerical results at hand, we consider the possibility of experimental
detection of DS with VUV–FEL radiation or attosecond pulses from high-harmonicgeneration.
In both cases, the presently available frequencies are satisfactorily high. So are the intensities.
The pulse length, however, is still a problem at the DESY machine, as the targeted value
for the near future is only some 30–50 fs, whereas, as mentioned above, durations of a few
femtoseconds are needed for DS. The gap could be bridged in principle by optical seeding
with suitably chosen XUV radiation, allowing for chirped-pulse amplification. Obviously,
attosecond pulses offer in this respect a very favourable starting point. The perennial difficulty
of having a large intensity distribution in the laser focus, which would completely blur DS,
could be countered by preparing the atoms in a sufficiently small region of the focus, as was
done in the stabilization experiment on Rydberg atoms [2, 3].

6. Conclusions

The calculation of the ionization probability of ground-state H with circularly polarized pulses
shows substantial DS at high frequencies for Gaussian and sech envelopes, over an extended
range of field amplitudes, at which our nonrelativistic calculation is expected to be valid.
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Figure 11. The same as for figure 10, except that ω = 4 au.

In contrast, for Lorentz pulses we find no DS in the same field range. This is traced back to
the very broad pedestal of these pulses. Moreover, the evolution of the atom is remarkably
adiabatic up to large peak fields, and down to very short pulses. The results for the Gaussian
and sech envelopes are similar to those obtained by Dondera et al [9] for linearly polarized
pulses and similar envelopes, if Pion is represented in terms of the peak intensity I0.

Our high-accuracy TDSE numerical code gives quasienergies in excellent agreement with
the Floquet values of Potvliege [19]. This emphasizes the fact that, after many years of
qualitative results, laser–atom interaction theory is now capable of producing consistently
accurate 3D predictions.

The calculations indicate the possibility of observing DS experimentally with the new
FEL–VUV light sources, or with attosecond pulses generated from high-harmonic generation.
However, the experiment should be state-of-the-art, at the frontier of present capabilities.
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